# MEM6810 Engineering Systems Modeling and Simulation 

工程系统建模与仿真
## Theory Analysis

## Lecture 3：Queueing Models

## SHEN Haihui 沈海辉

Sino－US Global Logistics Institute
Shanghai Jiao Tong University
ㅅ shenhaihui．github．io／teaching／mem6810f
，shenhaihui＠sjtu．edu．cn

Spring 2024 （full－time）

董浩云智能制造与服务管理研究院 CY TUNG Institute of Intelligent Manufacturing and Service Management
（中美物流研究院）
（Sino－US Global Logistics Institute）

## Contents

(1) Queueing Systems and Models

- Introduction
- Characteristics \& Terminology
- Kendall Notation
(2) Poisson Process
- Definition
- Properties
(3) Single-Station Queues
- Notations
- General Results
- Little's Law
- $M / M / 1$ Queue
- $M / M / s$ Queue
- $M / M / \infty$ Queue
- $M / M / 1 / K$ Queue
- $M / M / s / K$ Queue
- $M / G / 1$ Queue
(4) Queueing Networks
- Jackson Networks


## (1) Queueing Systems and Models

- Introduction
- Characteristics \& Terminology
- Kendall Notation
(2) Poisson Process
- Definition
- Properties
(3) Single-Station Queues
- Notations
- General Results
- Little's Law
- $M / M / 1$ Queue
- $M / M / s$ Queue
- $M / M / \infty$ Queue
- $M / M / 1 / K$ Queue
- $M / M / s / K$ Queue
- $M / G / 1$ Queue
(4) Queueing Networks
- Jackson Networks
- Queues (or waiting lines) are EVERYWHERE!
- Queues are an unavoidable component of modern life.
- E.g., in hospital, stores, bank, call center (online service), etc.
- Although we don't like standing in a queue, we appreciate the fairness that it imposes.
- Queues are not just for humans, however.
- E.g., email system, printer, manufacturing line, etc.
- Manufacturing systems maintain queues (called inventories) of raw materials, partly finished goods, and finished goods via the manufacturing process.


## Queueing Systems and Models



Figure: Queues in Hospital


## Queueing Systems and Models



Figure: Queues in Store (from The Sun)

## Queueing Systems and Models



Figure: Queues in Campus (for COVID-19 Nucleic Acid Test)

## Queueing Systems and Models



Figure: Queues in Bank

## Queueing Systems and Models



Figure: Queues in Bank (No requirement to stand physically in queues)

## Queueing Systems and Models

| －111 中国移动 | 4G | 下午2：29 |  |  |
| :---: | :---: | :---: | :---: | :---: |
| X |  | 在线客服 |  | ．．． |
|  |  | 询人数为 46 | 烦请耐 |  |

退押金

当前排队咨询人数为 460 ，烦请耐心等待哦～

```
退押金
```


## 11－20：12：01

（6）当前排队咨询人数为 425 ，烦请耐心等待哦～

```
退押金
```

心等待哦～

Figure：Queue in Online Service

## Queueing Systems and Models



Figure: Queue in Mail Server (from OASIS)

## Queueing Systems and Models



## Figure: Queue in Printer

## Queueing Systems and Models



Figure: Queues (Inventories) in Manufacturing Line (from Estes)

- Typically, a queueing system consists of a stream of "customers" (humans, goods, messages) that
- arrive at a service facility;
- wait in the queue according to certain discipline;
- get served;
- finally depart.
- A lot of real-world systems can be viewed as queueing systems, e.g.,
- service facilities
- production systems
- repair and maintenance facilities
- communications and computer systems
- transport and material-handling systems, etc.
- Queueing models are mathematical representation of queueing systems.


## Queueing Systems and Models

- Queueing models may be
- analytically solved using queueing theory when they are simple (highly simplified); or
- analyzed through simulation when they are complex (more realistic).
- Studied in either way, queueing models provide us a powerful tool for designing and evaluating the performance of queueing systems.
- They help us do this by answering the following questions (and many others):
(1) How many customers are there in the queue (or station) on average?
(2) How long does a typical customer spend in the queue (or station) on average?
(3) How busy are the servers on average?


## Queueing Systems and Models

- Simple queueing models solved analytically:
- Get rough estimates of system performance with negligible time and expense.
- More importantly, understand the dynamic behavior of the queueing systems and the relationships between various performance measures.
- Provide a way to verify that the simulation model has been programmed correctly.
- Complex queueing models analyzed through simulation:
- Allow us to incorporate arbitrarily fine details of the system into the model.
- Estimate virtually any performance measure of interest with high accuracy.
- This lecture focuses on the classical analytically solvable queueing models.
- The key elements of a queueing system are the customers and servers.
- The term customer can refer to anything that arrives and requires service.
- The term server can refer to any resource that provides the requested service.
- The term station means the entire or part of the system, which contains all the identical servers and the queue.
- Suppose that there is only one queue in one station.
- Capacity is the maximal number of customers allowed in the station.
- Number waiting in queue + number having service.
- Finite or infinite.


## Queueing Systems and Models

- Single-station queueing system.
- Customers simply leave after service.
- E.g., customers arrive to buy coffee and then leave.
- Multiple-station queueing system (queueing network).
- Customers can move from one station to another (for different service), before leaving the system.
- E.g., patients wait and get service at several different units inside a hospital.



## Queueing Systems and Models

- The arrival process describes how the customers come.
- Arrivals may occur at scheduled times or random times.
- When at random times, the interarrival times are usually characterized by a probability distribution.
- Customers may arrive one at a time or in batch (with constant or random batch size).
- Different types of customers.
- An customer arriving at a station:
- if the station capacity is full:
- the external arrival will leave immediately (called lost);
- the internal arrival may wait in the previous station (may block the previous server).
- if the station capacity is not full, enter the station:
- if there is idle server in the station, get service immediately;
- if all servers are busy, wait in the queue.


## Queueing Systems and Models

- Queue discipline: Which customer to serve first.
- First-in-first-out (FIFO), or first-come-first-served (FCFS).
- Last-in-first-out (LIFO), or last-come-first-served (LCFS).
- Shortest processing time first.
- Service according to priority (more than one customer types).
- Queue behavior: Actions of customers while waiting.
- Balk: leave when they see that the line is too long.
- Renege: leave after being in the line when they see that the line is moving too slowly.
- Service time is the duration of service in a server.
- Constant or random duration.
- May depend on the customer type.
- May depend on the time of day or the queue length.


## Queueing Systems and Models

- When without specification, the queueing models considered in this lecture shall satisfy the following:
(1) One customer type.
(2) Random arrivals (i.e., random interarrival times, iid.).
(3) No batch (or say, batch size is 1 ). ${ }^{\dagger}$
(4) One queue in one station.

5 First-come-first-served (FCFS).
(6) No balk, no renege.
(7) Random service time (depends on nothing else), iid.

- Even so, it is not that easy to analyze the queueing models!

[^0]- Canonical notational system proposed by Kendall (1953): $X / Y / s / K$.
- $X$ represents the interarrival-time distribution.
- M: Memoryless, i.e., exponential interarrival times;
- G: General;
- D: Deterministic.
- $Y$ represents the service-time distribution.
- Same letters as the interarrival times.
- $s$ represents the number of parallel servers.
- Finite value.
- For infinite number of servers, $s$ is replaced by $\infty$.
- $K$ represents the station capacity.
- Finite value.
- For infinite capacity, $K$ is replaced by $\infty$, or simply omitted.
- Examples: $M / M / 1, M / G / 1, M / M / s / K$.


## (1) Queueing Systems and Models

- Introduction
- Characteristics \& Terminology
- Kendall Notation
(2) Poisson Process
- Definition
- Properties


## (3) Single-Station Queues

- Notations
- General Results
- Little's Law
- $M / M / 1$ Queue
- $M / M / s$ Queue
- $M / M / \infty$ Queue
- $M / M / 1 / K$ Queue
- $M / M / s / K$ Queue
- $M / G / 1$ Queue
(4) Queueing Networks
- Jackson Networks
- A stochastic process $\{N(t), t \geq 0\}$ is said to be a counting process if $N(t)$ represents the total number of arrivals that have occurred up to time $t$.

- Let $\left\{X_{n}, n \geq 1\right\}$ denote the interarrival times:
- $X_{1}$ denotes the time of the first arrival;
- For $n \geq 2, X_{n}$ denotes the time between the $(n-1)$ st and the $n$th arrivals.
- Definition 1. The counting process $\{N(t), t \geq 0\}$ is called a Poisson process with rate $\lambda, \lambda>0$, if:
- $N(0)=0$;
- The process has independent and stationary increments;
- For $t>0, N(t) \sim \operatorname{Pois}(\lambda t)$, i.e.,

$$
\mathbb{P}(N(t)=n)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}, n=0,1,2, \ldots
$$

- Independent Increments: The numbers of arrivals in disjoint time intervals are independent.
- Stationary Increments: The distribution of number of arrivals in any time interval depends only on the length of time interval, i.e., for $s<t$, the distribution of $N(t)-N(s)$ depends only on $t-s$.
- Definition 2. The counting process $\{N(t), t \geq 0\}$ is called a Poisson process with rate $\lambda, \lambda>0$, if:
- $N(0)=0$;
- The process has independent and stationary increments;
- $\mathbb{P}(N(t)=1)=\lambda t+o(t)$;
- $\mathbb{P}(N(t) \geq 2)=o(t)$.
- Definition 3. The counting process $\{N(t), t \geq 0\}$ is called a Poisson process with rate $\lambda, \lambda>0$, if:
- $N(0)=0$;
- $\left\{X_{n}, n \geq 1\right\}$ is a sequence of iid random variables, and $X_{n} \sim \operatorname{Exp}(\lambda)$.
- Definition 1, Definition 2 and Definition 3 are equivalent.
- Question 1: When will the next appear?

Standing here, ask, when will the $3^{\text {rd }}$ arrival occur?


$$
\begin{aligned}
\mathbb{P}\left(X_{3}-a>x \mid X_{3}>a\right) & =\frac{\mathbb{P}\left(X_{3}-a>x, X_{3}>a\right)}{\mathbb{P}\left(X_{3}>a\right)} \\
& =\frac{\mathbb{P}\left(X_{3}>a+x, X_{3}>a\right)}{\mathbb{P}\left(X_{3}>a\right)} \\
& =\frac{\mathbb{P}\left(X_{3}>a+x\right)}{\mathbb{P}\left(X_{3}>a\right)} \\
& =\frac{e^{-\lambda(a+x)}}{e^{-\lambda a}}=e^{-\lambda x} . \quad(\text { Not related to } a!)
\end{aligned}
$$

- The Poisson process has no memory! (equivalent to the independent and stationary increments assumption)
- Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$ be the arrival time of the $n$th arrival.
- Question 2: If I only know there are $n$ arrivals up to time $t$, what can I say about the $n$ arrival times $S_{1}, \ldots, S_{n}$ ?
- A simplified case:

- Intuition:
- Since Poisson process possesses independent and stationary increments, each interval of equal length in $[0, t]$ should have the same probability of containing the arrival.
- Hence, the arrival time should be uniformly distributed on $[0, t]$.

Proof.

$$
\begin{aligned}
\mathbb{P}\left\{X_{1}<s \mid N(t)=1\right\} & =\frac{\mathbb{P}\left\{X_{1}<s, N(t)=1\right\}}{\mathbb{P}\{N(t)=1\}} \\
& =\frac{\mathbb{P}\{1 \text { arrival in }[0, s), 0 \text { arrival in }[s, t)\}}{\mathbb{P}\{N(t)=1\}} \\
& =\frac{\mathbb{P}\{1 \text { arrival in }[0, s)\} \mathbb{P}\{0 \text { arrival in }[s, t)\}}{\mathbb{P}\{N(t)=1\}} \quad \text { (independent) } \\
& =\frac{\mathbb{P}\{N(s)=1\} \mathbb{P}\{N(t-s)=0\}}{\mathbb{P}\{N(t)=1\}} \quad \text { (stationary) } \\
& =\frac{e^{-\lambda s} \lambda s e^{-\lambda(t-s)}}{e^{-\lambda t} \lambda t} \\
& =\frac{s}{t} .
\end{aligned}
$$

- Remark: This result can be generalized to $n$ arrivals.


## Property (Conditional Distribution of Arrival Times)

Given that $N(t)=n$, the $n$ arrival times $S_{1}, \ldots, S_{n}$ have the same distribution as the order statistics corresponding to $n$ independent RVs uniformly distributed on the interval $(0, t)$.

- Illustration:

Given $N(t)=n$, how can I generate a sample of $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ ?


1. Uniformly and independently sample $n$ points on $[0, t]$.
2. From small to large, call them $S_{1}, S_{2}, \ldots, S_{n}$.

- This is very nice for simulation!


## (1) Queueing Systems and Models

- Introduction
- Characteristics \& Terminology
- Kendall Notation
(2) Poisson Process
- Definition
- Properties
(3) Single-Station Queues
- Notations
- General Results
- Little's Law
- $M / M / 1$ Queue
- $M / M / s$ Queue
- $M / M / \infty$ Queue
- $M / M / 1 / K$ Queue
- $M / M / s / K$ Queue
- $M / G / 1$ Queue
(4) Queueing Networks
- Jackson Networks


## Single-Station Queues

- Let $L(t)$ denote the number of customers in the station at time $t$.


Figure: Illustration of $L(t)$ (from Banks et al. (2010))

- Let $\widehat{L}(T)$ denote the (time-weighted) average number of customers in the station up to time $T$ :

$$
\widehat{L}(T):=\frac{1}{T} \int_{0}^{T} L(t) \mathrm{d} t
$$

## Single-Station Queues

- Another expression of $\widehat{L}(T)$ : Let $T_{n}$ denote the total time during $[0, T]$ in which the station contains exactly $n$ customers.


Figure: Illustration of $L(t)$ (from Banks et al. (2010))

- $\widehat{L}(T):=\frac{1}{T} \int_{0}^{T} L(t) \mathrm{d} t=\frac{1}{T} \sum_{n=0}^{\infty} n T_{n}=\sum_{n=0}^{\infty} n\left(\frac{T_{n}}{T}\right)$.


## Single－Station Queues

－Suppose during time $[0, T]$ ，totally $N(T)$ customers have entered the station，and let $W_{1}, W_{2}, \ldots, W_{N(T)}$ denote the time each customer spends in the station up to time $T .{ }^{\dagger}$
－Let $\widehat{W}(T)$ denote the average sojourn time（逗留时间）in the station up to time $T$ ：

$$
\widehat{W}(T):=\frac{1}{N(T)} \sum_{i=1}^{N(T)} W_{i}
$$

－In a similar way，we can also define
－$\widehat{L}_{Q}(T)$－The average number of customers in the queue up to time $T$ ．
－$\widehat{W}_{Q}(T)$－The average waiting time in the queue up to time $T$ ．

[^1]
## Single-Station Queues

- Now we consider the long-run measures.
- $L$ - The long-run average number of customers in the station:

$$
L:=\lim _{T \rightarrow \infty} \widehat{L}(T)
$$

- $W$ - The long-run average sojourn time in the station:

$$
W:=\lim _{T \rightarrow \infty} \widehat{W}(T)
$$

- $L_{Q}$ - The long-run average number of customers in the queue:

$$
L_{Q}:=\lim _{T \rightarrow \infty} \widehat{L}_{Q}(T) .
$$

- $W_{Q}$ - The long-run average waiting time in the queue:

$$
W_{Q}:=\lim _{T \rightarrow \infty} \widehat{W}_{Q}(T)
$$

- Question: When will $L, W, L_{Q}$ and $W_{Q}$ exist (and $<\infty$ )?


## Single-Station Queues

- We also define the limiting probability that there will be exactly $n$ customers in the station as time goes to infinity:

$$
P_{n}:=\lim _{t \rightarrow \infty} \mathbb{P}\{L(t)=n\}, \quad n=0,1,2, \ldots
$$

- Question: When will $P_{n}$ exist?
- Moreover, for an arbitrary $X / Y / s / K$ queue
- Let $\lambda$ denote the arrival rate, i.e.,

$$
\mathbb{E}[\text { interarrival time }]=\frac{1}{\lambda} .
$$

- Let $\mu$ denote the service rate in one server, i.e.,

$$
\mathbb{E}[\text { service time }]=\frac{1}{\mu} .
$$

## Single-Station Queues

- Question: When will $L, W, L_{Q}, W_{Q}$ and $P_{n}$ exist?
- Answer: When the queue is stable. ${ }^{\dagger}$
- Question: When will the queue be stable?!


## Theorem 1 (Condition of Stability)

For an $X / Y / s / \infty$ queue (i.e., infinite capacity) with arrival rate $\lambda$ and service rate $\mu$, it is stable if

$$
\lambda<s \mu .
$$

And, an $X / Y / s / K$ queue (i.e., finite capacity) will always be stable.

[^2]
## Single-Station Queues

- Recall that $P_{n}:=\lim _{t \rightarrow \infty} \mathbb{P}\{L(t)=n\}, n=0,1,2, \ldots$.
- $P_{n}$ is also called the probability that there are exactly $n$ customers in the station when it is in the steady state.
- Since the system is stable and run for infinitely long time, it should enters some steady state (i.e., has nothing to do with the initial state).
- $L$ can also be written as $L:=\sum_{n=0}^{\infty} n P_{n}$ (see next slide).
- $L$ is also called the expected number of customers in the station in steady state;
- $W$ is also called the expected sojourn time in the station in steady state;
- $L_{Q}$ is also called the expected number of customers in the queue in steady state;
- $W_{Q}$ is also called the expected waiting time in the queue in steady state.


## Single-Station Queues

- Recall that $P_{n}:=\lim _{t \rightarrow \infty} \mathbb{P}\{L(t)=n\}, n=0,1,2, \ldots$
- It turns out that, when the queue is stable, $P_{n}$ also equals the long-run proportion of time that the station contains exactly $n$ customers, ${ }^{\dagger}$ i.e., with probability 1 , for all $n$,

$$
P_{n}=\lim _{T \rightarrow \infty} \frac{\text { amount of time during }[0, T] \text { that station contains } n \text { customers }}{T} .
$$

- Recall $\widehat{L}(T):=\frac{1}{T} \int_{0}^{T} L(t) \mathrm{d} t=\sum_{n=0}^{\infty} n\left(\frac{T_{n}}{T}\right)$, then

$$
\begin{aligned}
L:=\lim _{T \rightarrow \infty} \widehat{L}(T) & =\lim _{T \rightarrow \infty} \sum_{n=0}^{\infty} n\left(\frac{T_{n}}{T}\right) \\
& =\sum_{n=0}^{\infty} \lim _{T \rightarrow \infty} n\left(\frac{T_{n}}{T}\right) \quad(\text { by DCT }) \\
& =\sum_{n=0}^{\infty} n P_{n}
\end{aligned}
$$

[^3]
## Single－Station Queues

－Little＇s Law（守恒方程）is one of the most general and versatile laws in queueing theory．
－It is named after John D．C．Little，who was the first to prove a version of it，in 1961.
－When used in clever ways，Little＇s Law can lead to remarkably simple derivations．

## Theorem 2 （Little＇s Law－Empirical Version）

Define the observed entering rate $\widehat{\lambda}:=N(T) / T$ ，then

$$
\widehat{L}(T)=\widehat{\lambda} \widehat{W}(T), \quad \widehat{L}_{Q}(T)=\widehat{\lambda} \widehat{W}_{Q}(T)
$$

## Single-Station Queues

- Verify Little's Law.


Figure: Illustration of $L(t)$ and $W_{i}$ (from Banks et al. (2010))
$\widehat{\lambda}=N(T) / T=5 / 20=0.25$.
$\widehat{W}(T)=\frac{1}{N(T)} \sum_{i=1}^{N(T)} W_{i}=\frac{1}{5}(2+5+5+7+4)=\frac{23}{5}=4.6$.
$\widehat{L}(T)=\frac{1}{T} \sum_{n=0}^{\infty} n T_{n}=\frac{1}{20}(0 \times 3+1 \times 12+2 \times 4+3 \times 1)=\frac{23}{20}=1.15$.
So, $\widehat{\lambda} \widehat{W}(T)=0.25 \times 4.6=1.15=\widehat{L}(T) . \quad$ (Why it always holds?)

## Single-Station Queues

- Verify Little's Law.



Figure: Illustration of $L(t)$ and $W_{i}$ (from Banks et al. (2010))

- Why it always holds?
$\widehat{L}(T)=\frac{1}{T} \sum_{n=0}^{\infty} n T_{n}=\frac{1}{T} \times$ area.
$\widehat{\lambda} \widehat{W}(T)=\frac{N(T)}{T} \frac{1}{N(T)} \sum_{i=1}^{N(T)} W_{i}=\frac{1}{T} \sum_{i=1}^{N(T)} W_{i}=\frac{1}{T} \times$ area.
So, $\widehat{L}(T)=\widehat{\lambda} \widehat{W}(T)$ always holds.
- The same argument for $\widehat{L}_{Q}(T)=\widehat{\lambda} \widehat{W}_{Q}(T)$.


## Single-Station Queues

## Theorem 3 (Little's Law - Limit/Expectation Version)

For a stable queue, let $\lambda^{*}$ denote the arrival rate or entering rate, then

$$
L=\lambda^{*} W, \quad L_{Q}=\lambda^{*} W_{Q} .
$$

Caution: When $\lambda^{*}$ is the arrival rate, the time average ( $W, W_{Q}$ ) is based on all customers (who enter the station or are lost); When $\lambda^{*}$ is the entering rate, the time average is only based on the customers who enters the station.

- Some Remarks:
- For a customer who is lost (due to the finite capacity), he spends 0 amount of time in the station (or queue).
- Once we know anyone of $L, W, L_{Q}$ and $W_{Q}$, we can compute the rest using Little's Law.


## Single-Station Queues

- $M / M / 1$ Queue $^{\dagger}$
- The interarrival times are iid random variables with $\operatorname{Exp}(\lambda)$ distribution, that is to say, customers arrive according to a Poisson process with rate $\lambda$.
- The service times are iid random variables with $\operatorname{Exp}(\mu)$ distribution.
- The customers are served in an FCFS fashion by a single server.
- The capacity is unlimited, i.e., waiting space is unlimited.
- $M / M / 1$ queue is stable if and only if $\lambda<\mu$.
- Due to unlimited capacity, arrival rate $=$ entering rate.
- We now want to compute all the measures $P_{n}, L, W, L_{Q}$ and $W_{Q}$.

[^4]
## Single-Station Queues

- Recall that $L$ can be computed via $L=\sum_{n=0}^{\infty} n P_{n}$, where $P_{n}$ has two interpretations:
- Long-run proportion of time that the station contains exactly $n$ customers;
- Probability that there are exactly $n$ customers in the station as time goes to infinity (or equivalently, in the steady state).
- Define the state as the the number of customers in the system.
- The state space diagram is as follows:




## Single-Station Queues



## Key Observation 1

Rate at which the process leaves state $n$
$=$ Rate at which the process enters state $n$.

## Heuristic Proof.

- In any time interval, the number of transitions into state $n$ must equal to within 1 the number of transitions out of state $n$. (Why?)
- Hence, in the long run, the rate into state $n$ must equal the rate out of state $n$.


## Single-Station Queues



## Key Observation 2

Rate at which the process leaves state $0=P_{0} \lambda$;
Rate at which the process leaves state $n=P_{n}(\mu+\lambda), n \geq 1$;
Rate at which the process enters state $0=P_{1} \mu$;
Rate at which the process enters state $n=P_{n-1} \lambda+P_{n+1} \mu$, $n \geq 1$.

## Fact

If $X_{1}, \ldots, X_{n}$ are independent random variables, and $X_{i} \sim$ $\operatorname{Exp}\left(\lambda_{i}\right), i=1, \ldots, n$, then

$$
\min \left\{X_{1}, \ldots, X_{n}\right\} \sim \operatorname{Exp}\left(\lambda_{1}+\cdots+\lambda_{n}\right)
$$

## Single-Station Queues

## Theorem 4 (Limiting Distribution of $M / M / 1$ Queue)

For an $M / M / 1$ queue, when it is stable $(\lambda<\mu)$, its limiting (steady-state) distribution is given by

$$
P_{n}=(1-\rho) \rho^{n}, \quad n \geq 0,
$$

where $\rho:=\lambda / \mu<1$. ( $\rho$ is called the server utilization.)

Proof. Due to Observations 1 \& 2,

$$
\begin{array}{cccc}
\text { State } & \text { Rate Process Leaves } & & \text { Rate Process Enters } \\
0 & P_{0} \lambda & = & P_{1} \mu \\
n, n \geq 1 & P_{n}(\mu+\lambda) & = & P_{n-1} \lambda+P_{n+1} \mu
\end{array}
$$

Rewriting these equations gives

$$
\begin{aligned}
& P_{0} \lambda=P_{1} \mu, \\
& P_{n} \lambda=P_{n+1} \mu+\left(P_{n-1} \lambda-P_{n} \mu\right), \quad n \geq 1 .
\end{aligned}
$$

## Single-Station Queues

Recall that

$$
\begin{aligned}
& P_{0} \lambda=P_{1} \mu, \\
& P_{n} \lambda=P_{n+1} \mu+\left(P_{n-1} \lambda-P_{n} \mu\right), \quad n \geq 1 .
\end{aligned}
$$

Or, equivalently,

$$
\begin{aligned}
& P_{0} \lambda=P_{1} \mu \\
& P_{1} \lambda=P_{2} \mu+\left(P_{0} \lambda-P_{1} \mu\right)=P_{2} \mu \\
& P_{2} \lambda=P_{3} \mu+\left(P_{1} \lambda-P_{2} \mu\right)=P_{3} \mu \\
& P_{n} \lambda=P_{n+1} \mu+\left(P_{n-1} \lambda-P_{n} \mu\right)=P_{n+1} \mu, \quad n \geq 1 .
\end{aligned}
$$

Let $\rho:=\lambda / \mu(<1)$, solving in terms of $P_{0}$ yields

$$
\begin{aligned}
& P_{1}=P_{0} \rho \\
& P_{2}=P_{1} \rho=P_{0} \rho^{2}, \\
& P_{n}=P_{n-1} \rho=P_{0} \rho^{n}, \quad n \geq 1 .
\end{aligned}
$$

Since $1=\Sigma_{n=0}^{\infty} P_{n}=P_{0} \Sigma_{n=0}^{\infty} \rho^{n}=P_{0} /(1-\rho)$, we have

$$
P_{0}=1-\rho, \quad \text { and } \quad P_{n}=(1-\rho) \rho^{n}, \quad n \geq 1 .
$$

## Single-Station Queues

- $L=\sum_{n=0}^{\infty} n P_{n}=\sum_{n=0}^{\infty} n(1-\rho) \rho^{n}=\frac{\rho}{1-\rho}$.
- Using Little's Law, $W=L / \lambda=\frac{1}{\lambda} \frac{\rho}{1-\rho}=\frac{1}{\mu-\lambda}$.
- $L_{Q}=\sum_{n=1}^{\infty}(n-1) P_{n}=\sum_{n=1}^{\infty}(n-1)(1-\rho) \rho^{n}=\frac{\rho^{2}}{1-\rho}$.
- Using Little's Law, $W_{Q}=L_{Q} / \lambda=\frac{1}{\lambda} \frac{\rho^{2}}{1-\rho}=\frac{1}{\mu} \frac{\rho}{1-\rho}=\frac{\rho}{\mu-\lambda}$.
- Or, $W_{Q}=W-\mathbb{E}[$ service time $]=\frac{1}{\mu-\lambda}-\frac{1}{\mu}=\frac{\lambda}{\mu(\mu-\lambda)}=\frac{\rho}{\mu-\lambda}$.
- Using Little's Law, $L_{Q}=\lambda W_{Q}=\lambda \frac{\rho}{\mu-\lambda}=\frac{\rho^{2}}{1-\rho}$.
- Due to unlimited capacity, arrival rate $=$ entering rate, so the time average $\left(W, W_{Q}\right)$ is based on all customers.
- $\mathbb{P}($ the server is idle $)=P_{0}=1-\rho$.
- As $\rho \rightarrow 1$, all $L, W, L_{Q}$ and $W_{Q}$ tend to $\infty$.


## Single-Station Queues

- $M / M / s$ Queue $^{\dagger}$
- Customers arrive according to a Poisson process with rate $\lambda$.
- The service times are iid random variables with $\operatorname{Exp}(\mu)$ distribution.
- There are $s$ parallel servers.
- The customers form a single queue and get served by the next available server in an FCFS fashion.
- The capacity is unlimited, i.e., waiting space is unlimited.
- $M / M / s$ queue is stable if and only if $\lambda<s \mu$.
- Due to unlimited capacity, arrival rate $=$ entering rate.
- $M / M / s$ queue is a generalized version of $M / M / 1$ queue. Let $s=1$, all results should degenerate to those of $M / M / 1$.

[^5]
## Single-Station Queues

- The state space diagram is as follows:


Theorem 5 (Limiting Distribution of $M / M / s$ Queue)
For an $M / M / s$ queue, when it is stable $(\lambda<s \mu)$, its limiting (steady-state) distribution is given by

$$
P_{n}=\left[\sum_{i=0}^{s} \frac{1}{i!}\left(\frac{\lambda}{\mu}\right)^{i}+\frac{s^{s}}{s!} \frac{\rho^{s+1}}{1-\rho}\right]^{-1} \rho_{n}, \quad n \geq 0
$$

where the server utilization $\rho:=\lambda /(s \mu)<1$, and

$$
\rho_{n}:= \begin{cases}\frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n}, & \text { if } 0 \leq n \leq s, \\ \frac{s^{s}}{s!} \rho^{n}, & \text { if } n \geq s+1 .\end{cases}
$$

- $L_{Q}=\sum_{n=s}^{\infty}(n-s) P_{n}=\sum_{n=s}^{\infty}(n-s) P_{0} \rho_{n}=\sum_{k=0}^{\infty} k P_{0} \rho_{s+k}$

$$
=\sum_{k=1}^{\infty} k P_{0} \rho_{s} \rho^{k}=\sum_{k=1}^{\infty} k P_{s} \rho^{k}=\frac{P_{s} \rho}{(1-\rho)^{2}}
$$

- Using Little's Law, $W_{Q}=L_{Q} / \lambda=\frac{1}{\lambda} \frac{P_{s} \rho}{(1-\rho)^{2}}=\frac{P_{s}}{s \mu(1-\rho)^{2}}$.
- $W=W_{Q}+\mathbb{E}[$ service time $]=\frac{P_{s}}{s \mu(1-\rho)^{2}}+\frac{1}{\mu}$.
- Using Little's Law, $L=\lambda W=\lambda\left(W_{Q}+\frac{1}{\mu}\right)=L_{Q}+\frac{\lambda}{\mu}=\frac{P_{s} \rho}{(1-\rho)^{2}}+\frac{\lambda}{\mu}$.
- Due to unlimited capacity, arrival rate = entering rate, so the time average $\left(W, W_{Q}\right)$ is based on all customers.
- As $\rho \rightarrow 1$, all $L, W, L_{Q}$ and $W_{Q}$ tend to $\infty$.


## Single－Station Queues

－By letting $s \rightarrow \infty$ we get the $M / M / \infty$ queue as a limiting case of the $M / M / s$ queue．
－Note：$M / M / \infty$ queue is always stable！（The server utilization is always 0 ．）
－All the measures can be obtained by letting $s \rightarrow \infty$ for those in the case of $M / M / s$ queue．${ }^{\dagger}$
－Or，one can still derive $P_{n}$ via the state space diagram：


[^6]
## Single-Station Queues

## Theorem 6 (Limiting Distribution of $M / M / \infty$ Queue)

For an $M / M / \infty$ queue, its limiting (steady-state) distribution is given by

$$
P_{n}=e^{-\lambda / \mu} \frac{(\lambda / \mu)^{n}}{n!}, \quad n \geq 0
$$

- In steady state, the number of customers in an $M / M / \infty$ station $\sim \operatorname{Poisson}(\lambda / \mu)$.
- Hence, $L=\sum_{n=0}^{\infty} n P_{n}=\mathbb{E}\left[\right.$ Poisson RV with mean $\left.\frac{\lambda}{\mu}\right]=\frac{\lambda}{\mu}$.
- Using Little's Law, $W=L / \lambda=\frac{1}{\mu}$.
- $L_{Q}=0, W_{Q}=0$.


## Single-Station Queues

- $M / M / 1 / K$ Queue ${ }^{\dagger}$
- Customers arrive according to a Poisson process with rate $\lambda$.
- The service times are iid random variables with $\operatorname{Exp}(\mu)$ distribution.
- The customers are served in an FCFS fashion by a single server.
- The capacity is $K, K \geq 1$, i.e., the maximal number of customers waiting in queue + customers in server $\leq K$.
- A customer who finds the station is full ( $K$ customers there) leaves immediately (lost).
- The entering rate, denoted as $\lambda_{e}$, is smaller than the arrival rate $\lambda$.
- It is always stable (due to the finite capacity).
- In steady state
- $\mathbb{P}($ station is full $)=P_{K}$.
- Entering rate $\lambda_{e}=\lambda\left(1-P_{K}\right)$.
${ }^{\dagger} M / M / 1 / K$ Queue $\subset$ Birth and Death Process with Finite Capacity $\subset$ Continuous-Time Markov Chain.


## Single-Station Queues

- The state space diagram is as follows:



## Theorem 7 (Limiting Distribution of $M / M / 1 / K$ Queue)

For an $M / M / 1 / K$ queue, its limiting (steady-state) distribution is given by

$$
P_{n}=\left\{\begin{array}{ll}
\frac{(1-\rho) \rho^{n}}{1-\rho^{K+1}}, & \text { if } \rho \neq 1, \\
\frac{1}{K+1}, & \text { if } \rho=1,
\end{array} \quad 0 \leq n \leq K,\right.
$$

where $\rho:=\lambda / \mu$. $(\rho$ is NOT the server utilization! $)$


Proof. Due to Observations 1 \& 2,

| State | Rate Process Leaves |  | Rate Process Enters |
| :---: | :---: | :---: | :---: |
| 0 | $P_{0} \lambda$ | $=$ | $P_{1} \mu$ |
| $n, 1 \leq n \leq K-1$ | $P_{n}(\mu+\lambda)$ | $=$ | $P_{n-1} \lambda+P_{n+1} \mu$ |
| $K$ | $P_{K} \mu$ |  |  |
|  |  | $P_{K-1} \lambda$ |  |

Rewriting these equations gives

$$
\begin{aligned}
P_{0} \lambda & =P_{1} \mu, \\
P_{n} \lambda & =P_{n+1} \mu+\left(P_{n-1} \lambda-P_{n} \mu\right), \quad 1 \leq n \leq K-1, \\
P_{K} \mu & =P_{K-1} \lambda .
\end{aligned}
$$

## Single-Station Queues

Or, equivalently,

$$
\begin{aligned}
P_{0} \lambda & =P_{1} \mu, \\
P_{1} \lambda & =P_{2} \mu+\left(P_{0} \lambda-P_{1} \mu\right)=P_{2} \mu, \\
P_{2} \lambda & =P_{3} \mu+\left(P_{1} \lambda-P_{2} \mu\right)=P_{3} \mu, \\
P_{n} \lambda & =P_{n+1} \mu+\left(P_{n-1} \lambda-P_{n} \mu\right)=P_{n+1} \mu, \quad 1 \leq n \leq K-2, \\
P_{K-1} \lambda & =P_{K} \mu .
\end{aligned}
$$

Let $\rho:=\lambda / \mu$, solving in terms of $P_{0}$ yields

$$
\begin{aligned}
& P_{1}=P_{0} \rho, \\
& P_{2}=P_{1} \rho=P_{0} \rho^{2}, \\
& P_{n}=P_{n-1} \rho=P_{0} \rho^{n}, \quad 1 \leq n \leq K .
\end{aligned}
$$

Since $1=\Sigma_{n=0}^{K} P_{n}=P_{0} \Sigma_{n=0}^{K} \rho^{n}=\left\{\begin{array}{ll}P_{0} \frac{1-\rho^{K+1}}{1-\rho}, & \text { if } \rho \neq 1, \\ P_{0}(K+1), & \text { if } \rho=1,\end{array}\right.$ we have,
if $\rho \neq 1, \quad P_{0}=\frac{1-\rho}{1-\rho^{K+1}}, \quad$ and $\quad P_{n}=\frac{(1-\rho) \rho^{n}}{1-\rho^{K+1}}, \quad 1 \leq n \leq K$;
if $\rho=1, \quad P_{0}=\frac{1}{K+1}, \quad$ and $\quad P_{n}=\frac{1}{K+1}, \quad 1 \leq n \leq K$.

- If $\rho \neq 1$,

$$
\begin{aligned}
L & =\sum_{n=0}^{K} n P_{n}=\sum_{n=0}^{K} n \frac{(1-\rho) \rho^{n}}{1-\rho^{K+1}}=\frac{1-\rho}{1-\rho^{K+1}} \sum_{n=0}^{K} n \rho^{n} \\
& =\frac{1-\rho}{1-\rho^{K+1}} \frac{\rho-(K+1) \rho^{K+1}+K \rho^{K+2}}{(1-\rho)^{2}}=\frac{\rho}{1-\rho} \frac{1-(K+1) \rho^{K}+K \rho^{K+1}}{1-\rho^{K+1}} .
\end{aligned}
$$

- If $\rho=1$,
$L=\sum_{n=0}^{K} n P_{n}=\sum_{n=0}^{K} n \frac{1}{K+1}=\frac{1}{K+1} \frac{(K+1) K}{2}=\frac{K}{2}$.
- $\mathbb{P}($ station is full $)=P_{K}$.
- Entering rate $\lambda_{e}=\lambda\left(1-P_{K}\right)$.
- The server utilization $=\lambda_{e} / \mu=\rho\left(1-P_{K}\right)$.
- As $\rho \rightarrow \infty, L \rightarrow K, 1-P_{K} \rightarrow 0, \rho\left(1-P_{K}\right) \rightarrow 1$.


## Single-Station Queues

- For those entered the station
- The expected sojourn time $W=L / \lambda_{e}=\frac{L}{\lambda\left(1-P_{K}\right)}$.
- The expected waiting time $W_{Q}=W-\frac{1}{\mu}=\frac{L}{\lambda\left(1-P_{K}\right)}-\frac{1}{\mu}$.
- For ALL the arrivals (those who are lost have 0 sojourn time and waiting time)
- The expected sojourn time $W^{\prime}=\left(1-P_{K}\right) W+0=\frac{L}{\lambda}$.
- The expected waiting time $W_{Q}^{\prime}=\left(1-P_{K}\right) W_{Q}+0=\frac{L}{\lambda}-\frac{1-P_{K}}{\mu}$.
- The expected queue length $L_{Q}=\lambda_{e} W_{Q}=L-\rho\left(1-P_{K}\right)$,

$$
\text { or, }=\lambda W_{Q}^{\prime}=L-\rho\left(1-P_{K}\right)
$$

- As $\rho \rightarrow \infty, 1-P_{K} \rightarrow 0, \rho\left(1-P_{K}\right) \rightarrow 1, L \rightarrow K, L_{Q} \rightarrow K-1$.
- If $\mu$ is fixed and $\lambda \rightarrow \infty$ :

$$
\lambda\left(1-P_{K}\right) \rightarrow \mu, W \rightarrow \frac{K}{\mu}, W_{Q} \rightarrow \frac{K-1}{\mu}, W^{\prime} \rightarrow 0, W_{Q}^{\prime} \rightarrow 0
$$

- If $\lambda$ is fixed and $\mu \rightarrow 0$ :

$$
\frac{1}{\mu}\left(1-P_{K}\right) \rightarrow \frac{1}{\lambda}, W \rightarrow \infty, W_{Q} \rightarrow \infty, W^{\prime} \rightarrow \frac{K}{\lambda}, W_{Q}^{\prime} \rightarrow \frac{K-1}{\lambda}
$$

## Single-Station Queues

- $M / M / s / K$ queue $^{\dagger}$ is a generalized version of $M / M / 1 / K$ queue. $(K \geq s)$
- The state space diagram is as follows:


 $\lambda$

- Let $s=1$, it becomes the $M / M / 1 / K$ queue.
- Let $s=K$, it becomes the $M / M / K / K$ queue.
- There is no $M / M / \infty / K$ queue!

[^7]
## Single-Station Queues

## Theorem 8 (Limiting Distribution of $M / M / s / K$ Queue)

For an $M / M / s / K$ queue, its limiting (steady-state) distribution is given by

$$
P_{n}=\left[\sum_{i=0}^{s} \frac{1}{i!}\left(\frac{\lambda}{\mu}\right)^{i}+\varrho\right]^{-1} \rho_{n}, \quad 0 \leq n \leq K
$$

where $\rho:=\lambda /(s \mu)$, ( $\rho$ is NOT the server utilization!) and

$$
\varrho:= \begin{cases}\frac{s^{s}}{s!} \frac{\rho^{s+1}\left(1-\rho^{K-s}\right)}{1-\rho}, & \text { if } \rho \neq 1 \\ \frac{s^{s}}{s!}(K-s), & \text { if } \rho=1\end{cases}
$$

and

$$
\rho_{n}:= \begin{cases}\frac{1}{n!}\left(\frac{\lambda}{\mu}\right)^{n}, & \text { if } 0 \leq n \leq s \\ \frac{s^{s}}{s!} \rho^{n}, & \text { if } s+1 \leq n \leq K, K \geq s+1\end{cases}
$$

- The server utilization $=\lambda_{e} /(s \mu)=\rho\left(1-P_{K}\right)$.


## Single-Station Queues

- $M / G / 1$ Queue ${ }^{\dagger}$
- Customers arrive according to a Poisson process with rate $\lambda$.
- The service times are iid random variables with arbitrary distribution (mean: $\frac{1}{\mu}$, variance: $\sigma^{2}$ ).
- The customers are served in an FCFS fashion by a single server.
- The capacity is unlimited, i.e., waiting space is unlimited.
- $M / G / 1$ queue is stable if and only if $\lambda<\mu$.
- Let $m^{2}:=\left(\frac{1}{\mu}\right)^{2}+\sigma^{2}$, and the server utilization $\rho:=\lambda / \mu<1$.
- $\mathbb{P}($ the server is idle $)=1-\rho$.
- $W_{Q}=\frac{\lambda m^{2}}{2(1-\rho)}$.
- $L_{Q}=\lambda W_{Q}=\frac{\lambda^{2} m^{2}}{2(1-\rho)}$.
- $W=W_{Q}+\frac{1}{\mu}=\frac{\lambda m^{2}}{2(1-\rho)}+\frac{1}{\mu}$.
- $L=\lambda W=L_{Q}+\lambda / \mu=\frac{\lambda^{2} m^{2}}{2(1-\rho)}+\rho$.
- For $M / G / \infty$, the measures are the same as those in $M / M / \infty$.
${ }^{\dagger} M / G / 1$ queue has an embedded discrete-time Markov chain.


## (1) Queueing Systems and Models

- Introduction
- Characteristics \& Terminology
- Kendall Notation
(2) Poisson Process
- Definition
- Properties
(3) Single-Station Queues
- Notations
- General Results
- Little's Law
- $M / M / 1$ Queue
- $M / M / s$ Queue
- $M / M / \infty$ Queue
- $M / M / 1 / K$ Queue
- $M / M / s / K$ Queue
- $M / G / 1$ Queue

4) Queueing Networks

- Jackson Networks


## Queueing Networks

- Queueing Network (multiple-station queueing system)
- Customers can move from one station to another (for different service), before leaving the system.

Station 2


Figure: Illustration of Queueing Networks

- Jackson Queueing Network (first identified by Jackson (1963)) $)^{\dagger}$
(1) The network has $J$ single-station queues.
(2) The $j$ th station has $s_{j}$ servers and a single queue.
(3) There is unlimited waiting space at each station (infinite capacity).
(4) Customers arrive at station $j$ from outside according to a Poisson process with rate $\lambda_{j}$; all arrival processes are independent of each other.
(5) The service times at station $j$ are iid random variables with $\operatorname{Exp}\left(\mu_{j}\right)$ distribution.
(6) Customers finishing service at station $i$ join the queue (if any) at station $j$ with routing probability $p_{i j}$, or leave the network with probability $p_{i 0}$, independently of each other.
(7) A customer finishing service may be routed to the same station (i.e., re-enter).

[^8]- The routing probabilities $p_{i j}$ can be put in a matrix form as follows:

$$
\boldsymbol{P}:=\left[\begin{array}{ccccc}
p_{11} & p_{12} & p_{13} & \cdots & p_{1 J} \\
p_{21} & p_{22} & p_{23} & \cdots & p_{2 J} \\
p_{31} & p_{32} & p_{33} & \cdots & p_{3 J} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
p_{J 1} & p_{J 2} & p_{J 3} & \cdots & p_{J J}
\end{array}\right] .
$$

- The matrix $\boldsymbol{P}$ is called the routing matrix.
- Since a customer leaving station $i$ either joints some other station, or leaves, we must have

$$
\sum_{j=1}^{J} p_{i j}+p_{i 0}=1, \quad 1 \leq i \leq J
$$

## Queueing Networks

- Example 1: Tandem Queue

- Example 2: General Network


$$
\boldsymbol{P}=\left[\begin{array}{ccc}
0 & 0.6 & 0.2 \\
0 & 0 & 0.4 \\
0 & 0.5 & 0.1
\end{array}\right]
$$

- Recall that customers arrive at station $j$ from outside with rate $\lambda_{j}$.
- Let $b_{j}$ be the rate of internal arrivals to station $j$.
- Then the total arrival rate to station $j$, denoted as $a_{j}$, is given by

$$
a_{j}=\lambda_{j}+b_{j}, \quad 1 \leq j \leq J
$$

- If the stations are all stable
- The departure rate of customers from station $i$ will be the same as the total arrival rate to station $i$, namely, $a_{i}$.
- The arrival rate of internal customers from station $i$ to station $j$ is $a_{i} p_{i j}$.
- Hence, $b_{j}=\sum_{i=1}^{J} a_{i} p_{i j}, \quad 1 \leq j \leq J$.
- Substituting in the pervious equation, we get the traffic equations:

$$
a_{j}=\lambda_{j}+\sum_{i=1}^{J} a_{i} p_{i j}, \quad 1 \leq j \leq J .
$$

- Let $\boldsymbol{a}^{\boldsymbol{\top}}=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{J}\end{array}\right]$ and $\boldsymbol{\lambda}^{\top}=\left[\begin{array}{llll}\lambda_{1} & \lambda_{2} & \cdots & \lambda_{J}\end{array}\right]$, the traffic equations can be written in matrix form as

$$
\boldsymbol{a}^{\top}=\boldsymbol{\lambda}^{\top}+\boldsymbol{a}^{\top} \boldsymbol{P}
$$

or

$$
\boldsymbol{a}^{\top}(\boldsymbol{I}-\boldsymbol{P})=\lambda^{\top}
$$

where $\boldsymbol{I}$ is the $J \times J$ identity matrix.

- Suppose the matrix $\boldsymbol{I}-\boldsymbol{P}$ is invertible, the above equation has a unique solution given by

$$
\boldsymbol{a}^{\top}=\boldsymbol{\lambda}^{\top}(\boldsymbol{I}-\boldsymbol{P})^{-1}
$$

- The next theorem states the stability condition for Jackson networks in terms of the above solution.


## Queueing Networks

Theorem 9 (Stability of Jackson Networks)
A Jackson network with external arrival rate vector $\boldsymbol{\lambda}$ and routing matrix $\boldsymbol{P}$ is stable if:
(1) $\boldsymbol{I}-\boldsymbol{P}$ is invertible; and
(2) $a_{i}<s_{i} \mu_{i}$ for all $i=1,2, \ldots, J$, where $a_{i}$ is given by the traffic equations.

- Example 1: Tandem Queue

| $\lambda_{1}=10$ | Station 1 | $\xrightarrow{p_{12}=1}$ | Station 2 | $p_{23}=1$ | Station 3 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & s_{1}=2 \\ & \mu_{1}=6 \end{aligned}$ |  | $\begin{aligned} & s_{2}=3 \\ & \mu_{2}=4 \end{aligned}$ |  | $\begin{gathered} s_{3}=1 \\ \mu_{3}=12 \end{gathered}$ |

$$
\boldsymbol{P}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] . \quad \boldsymbol{\lambda}=\left[\begin{array}{c}
10 \\
0 \\
0
\end{array}\right], \quad \boldsymbol{a}^{\boldsymbol{\top}}=\boldsymbol{\lambda}^{\boldsymbol{\top}}(\boldsymbol{I}-\boldsymbol{P})^{-1}=\left[\begin{array}{lll}
10 & 10 & 10
\end{array}\right] .
$$

Stable.

## Queueing Networks

## - Examples

- Example 2: General Network

$\boldsymbol{\lambda}=\left[\begin{array}{l}8 \\ 1 \\ 3\end{array}\right], \quad \boldsymbol{a}^{\top}=\boldsymbol{\lambda}^{\top}(\boldsymbol{I}-\boldsymbol{P})^{-1}=\left[\begin{array}{ll}8 & 10.7 \\ 9.9\end{array}\right] \Rightarrow$ Stable.
If $\lambda_{2}$ is increased to 4 ,
$\boldsymbol{\lambda}=\left[\begin{array}{l}8 \\ 4 \\ 3\end{array}\right], \quad \boldsymbol{a}^{\boldsymbol{\top}}=\boldsymbol{\lambda}^{\boldsymbol{\top}}(\boldsymbol{I}-\boldsymbol{P})^{-1}=\left[\begin{array}{ll}8 & 14.6 \\ 11.6\end{array}\right] \Rightarrow$ Unstable.
- Let $L_{j}(t)$ be the number of customers in the $j$ th station in a Jackson network at time $t$.
- Then the state of the network at time $t$ is given by $\left[L_{1}(t), L_{2}(t), \ldots, L_{J}(t)\right]$.
- When the Jackson network is stable, the limiting distribution of the sate of the network is

$$
\begin{aligned}
& P\left(n_{1}, n_{2}, \ldots, n_{J}\right) \\
& \quad=\lim _{t \rightarrow \infty} \mathbb{P}\left\{L_{1}(t)=n_{1}, L_{2}(t)=n_{2}, \ldots, L_{J}(t)=n_{J}\right\}
\end{aligned}
$$

- It is a joint probability.


## Queueing Networks

## Theorem 10 (Limiting Distribution of Jackson Network)

For a stable Jackson network, its limiting (steady-state) distribution is given by

$$
P\left(n_{1}, n_{2}, \ldots, n_{J}\right)=P_{1}\left(n_{1}\right) P_{2}\left(n_{2}\right) \cdots P_{J}\left(n_{J}\right)
$$

for $n_{j}=0,1,2, \ldots$ and $j=1,2, \ldots, J$, where $P_{j}(n)$ is the limiting probability that there are $n$ customers in an $M / M / s_{j}$ queue with arrival rate $a_{j}$ and service rate $\mu_{j}$.

- The limiting joint distribution of $\left[L_{1}(t), \ldots, L_{J}(t)\right]$ is a product of the limiting marginal distribution of $L_{j}(t), j=1, \ldots, J$. $\Rightarrow$ Limiting behavior of all stations are independent of each other.
- The limiting distribution of station $j$ is the same as that in an isolated $M / M / s_{j}$ queue with arrival rate $a_{j}$ and service rate $\mu_{j}$. ( $a_{j}$ 's are solved from the traffic equations.)


[^0]:    ${ }^{\dagger} 1+2+3 \Rightarrow$ The arrival process is a renewal process.

[^1]:    ${ }^{\dagger}$ The time includes both the waiting time in queue and the time in server．The part after $T$ is not counted．

[^2]:    ${ }^{\dagger}$ That is to say, the underlying Markov chain is positive recurrent.

[^3]:    ${ }^{\dagger}$ A sufficient condition is that the queueing process is regenerative, which is satisfied in our discussion.

[^4]:    ${ }^{\dagger} M / M / 1$ Queue $\subset$ Birth and Death Process with Infinite Capacity $\subset$ Continuous-Time Markov Chain.

[^5]:    ${ }^{\dagger} M / M / 1$ Queue $\subset M / M / s$ Queue $\subset$ Birth and Death Process with Infinite Capacity $\subset$ CTMC.

[^6]:    ${ }^{\dagger}$ Use the Taylor expansion（泰勒展开）：$e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}$ ．

[^7]:    ${ }^{\dagger} M / M / 1 / K$ Queue $\subset M / M / s / K$ Queue $\subset$ Birth and Death Process with Finite Capacity $\subset$ CTMC.

[^8]:    $\dagger$ Jackson network is an $J$-dimensional continuous-time Markov chain.

